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Abstract: Breast cancer remains a major cause of death from tumors in females globally. Detecting it early via mammograms
often leads to better results for those affected. Still, challenges like dense tissue, variation between radiologists, too many scans
to review, reduce precision in diagnosis. New tools powered by artificial intelligence - particularly systems based on deep
learning - are beginning to help address these problems. This examination looks closely at artificial intelligence techniques
applied to breast imaging, drawing insights from more than fifty published research papers. Model structures, data
characteristics, performance measures, and real-world medical application form the core of the discussion. Convolutional
neural networks appear most frequently across the studies reviewed. Boosted by transfer learning, combined approaches, or
inputs from multiple image angles, such systems tend to outperform older detection tools in precision, true positive rates, and
AUC scores. Yet even with strong test outcomes, movement into daily hospital practice remains limited. This issue stems from
multiple weaknesses, including dependence on past or narrow data, insufficient access to broad and varied mammogram
collections, weaker results in women with dense breasts, poor model transparency, alongside missing long-term trials across
different hospitals. Gathering today’s findings reveals key areas left unexplored, highlighting directions essential for creating
trustworthy, clear, and medically useful artificial intelligence tools for breast imaging.
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1. Introduction gaps. Wrong calls like these lead to avoidable procedures,
stress, or later detection that changes treatment paths [5], [11].
1.1 Background As more screenings happen globally, radiologists face heavier
loads and tiredness builds - raising chances of mistakes over

Despite progress in medical science, breast cancer still claims time [8].

many lives among women globally, standing out as a primary

source of cancer deaths even with advances in detection tools Despite aiming to help radiologists detect abnormalities in

and treatments [1], [48]. Because catching it sooner often leads . . . .
mammograms, conventional computer-aided diagnosis tools

to longer survival, less intense therapies, and healthier daily

o ) ] faced challenges due to rigid design choices. Instead of learning
living, structured screening efforts are seen as vital parts of

’ ) : patterns, initial versions depended on predefined rules and
handling the illness well. Detection through mammograms has

i ) > manually designed traits, making them less effective under
taken center stage in public health strategies since these scans

) varying scan qualities or among different groups of patients [6],
can reveal tiny tumours that cannot yet be felt by hand [2], [7].

i . T ’ [10]. Because outcomes varied and incorrect alarms occurred
Given their low expense and availability across regions,

] ) ] o frequently, trust in these tools remained low. As a result,
mammographic screenings remain key components within both

) adoption in everyday medical settings stayed minimal.
local and global preventive healthcare frameworks.

Nowadays, artificial intelligence - especially through deep

Even though mammograms matter clinically, reading them well learning - has changed how medical images are analyzed.

is tough. Because breast tissue varies so much, spotting issues

. o Starting from basic mammogram data, convolutional neural
gets harder when images show faint signs or cluttered anatomy

] i networks pull out layered features automatically, so specialists
- especially where cancer blends into healthy areas [3], [4]. One

) ) ) ; do not have to design them by hand; instead, these systems
reader might see something another misses, which means some

detect subtle signs linked to cancer growth [9], [14]. Work done

people get called back needlessly while others slip through recently shows machines guided by Al can match or even
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outperform  experienced radiologists when reading
mammograms, especially under structured test conditions and
evaluation trials [3], [5]. Because of such progress, there is
growing confidence that Al might improve precision in
diagnosis while aiding real-world medical choices.

Nowadays, artificial intelligence applied to mammograms
draws growing attention - not just as an independent tool but as
support for doctors reading scans. One goal stands out: cutting
down busy workloads while making results more reliable from
one expert to another, boosting how smoothly screenings run
[7], [21]. Still, differences in data quality, testing methods, and
ways researchers confirm findings make it hard to compare
what studies claim. Some depend on past cases or selected
samples that might not mirror everyday clinic settings. That gap
shows why a careful overview matters - to weigh advances so
far, spot stubborn hurdles, and point toward where research
should go next in using Al to find breast cancer early [10], [22].

1.2 Statement of the Problem

Even though artificial intelligence in mammography performs
well, real-world medical use faces persistent hurdles.
Differences in data, image handling techniques, testing criteria,
and study designs cause wide variation between research
findings [10], [15]. Since numerous algorithms rely on limited
or narrow data samples, questions emerge about consistency
when applied to diverse patient groups or equipment brands
[18], [23].

Looking ahead, many Al applications face limited testing
across diverse clinical settings [21], [22]. Because deep neural
networks often lack transparency, questions emerge - not only
around interpretation but also clinician confidence and
responsible deployment [35], [46], [53]. What stands out is the
importance of systematically analyzing available studies to
gauge real advancements, uncover weaknesses, and point
toward unmet needs.

1.3 Purpose of the Research

This paper sets out to explore Al-driven techniques applied in
mammogram analysis for breast cancer detection. Drawing
from scholarly articles published lately, it collects insights into
the design, testing, and integration of these systems within
clinical imaging processes [2], [7], [10].

This review focuses on how choices in Al architecture relate to
types of mammography data and outcomes like accuracy,
sensitivity, specificity, and AUC, based on findings from prior
work [3], [5], [18]. By comparing studies, it explores influences
on results - such as volume of data, clarity of images, tissue
density, and methods involving pre-trained models, combined
models, or multiple image views - from referenced sources
[20], [23], [45].

Looking beyond individual results, this work examines
weaknesses often seen across studies - such as skewed datasets,

lack of outside testing, poor interpretability, and hurdles in
practical use [22], [35], [46]. Instead of just summarizing
outcomes, it pulls insights from more than fifty papers to
highlight unanswered questions and emerging paths vital for
building Al tools in mammography that perform consistently
and earn clinical confidence [29], [55].

2. Literature Review

Early detection stands as a key part of breast cancer
management, according to existing research. What makes Waks
and Winer’s work notable is their focus on treatment pathways
shaped by timely diagnosis [1]. Screening practices now face
changes due to Al, something Houssami et al. examine through
practical integration issues and potential benefits [2]. One
turning point emerged when Rodriguez-Ruiz and team tested
Al independently against many radiologists, revealing how
machine results align with expert interpretations in
mammograms [3]. Another angle comes from Rodriguez-Ruiz,
who examined the role of artificial intelligence in spotting
abnormalities on mammograms, revealing its effect on real-
world medical judgments - not merely quoting algorithm
performance [4]. In much the same way, work by Kim et al.
looked at how machine assistance changes both correct
diagnoses and unnecessary follow-ups when used across teams
of radiologists, grounding lab findings in actual screening
results [5]. Beyond individual trials, broader summaries also
appear in current papers. For instance, Bharati and team survey
techniques using artificial neural networks in breast imaging,
drawing lines between older network designs and today’s
deeper models [6]. What sets Sechopoulos, Teuwen, and Mann
apart is their detailed look at mammography alongside digital
breast tomosynthesis, spelling out how these imaging forms
differ in practice - details that shape both development and
testing of artificial intelligence tools [7]. Instead of building
models, Raya-Povedano et al. turn attention to how Al might
ease radiologist workload, using real-world markers such as
reading duration and process flow to measure effect [8]. From
another angle, Shah and team map emerging patterns across
studies, piecing together where research stands now while
pulling forward recurring ideas seen lately in literature [9].
Looking backward with structure, Zebari's group pull together
existing computational approaches used in computer-aided
detection for mammograms, offering clarity on processing
chains, data handling steps, and ways performance gets
assessed [10]. Shifting ground entirely, Diaz and others
question if Al truly works within population screening efforts,
moving past algorithms toward actual program-level results and
what stops integration into routine care [11]. Starting with older
machine learning approaches, some research still finds value in
traditional techniques due to their presence in current
mammography workflows involving manual feature design or
mixed modeling steps. Instead of focusing solely on modern
networks, one team led by Tian evaluates how selecting specific
features impacts diagnostic accuracy and consistency across
systems, offering insight into foundational model behaviour
[12]. Rather than skipping image preparation, Patel along with
Hadia shows how refining raw scans before analysis improves
signal clarity for artificial neural networks [13]. Shifting
perspective, Yoon together with Kim explore deep learning
tools through the lens of medical practitioners, aligning
algorithmic outputs with real-world interpretation demands and
practical constraints in clinics [14]. Moving beyond isolated
methods, work by Wang et al. maps out uses of advanced
models in breast cancer detection, forming a cohesive backdrop
for understanding evolving trends in automated imaging



reviews [15]. From 2022 onward, studies show growing
attention to clinical application alongside improved research
methods. What stands out is how Sechopoulos, Teuwen, and
Mann emphasize a modality-sensitive approach, key for
coherence and context in review work [16]. In step with broader
progress, Karthiga et al. explore artificial intelligence for
detecting abnormalities in recent mammogram technologies,
fitting into a pattern of refined deep learning systems and
stricter validation standards [17]. Instead of treating tumors
uniformly, Lee and team investigate how computer-aided
detection tools reflect differences tied to cancer type and image
traits - revealing that results may shift depending on biological
subtype and appearance [18]. Meanwhile, Al-Fahaidy's group
proposes a classification framework applying machine learning
to digitized scans, building further on basic algorithms and
transparent modeling strategies for interpreting mammographic
data [19]. A new hybrid deep learning approach emerges
through work by Wang et al., aligning with efforts to blend
methods for better reliability and precision [20]. Instead of
looking back, Chang’s team sets up a forward-looking, multi-
site framework named AI-STREAM - an unusual move given
most past studies analyze old data; such designs help shape how
future tests might unfold [21]. Patterns across many trials add
depth to how clinicians interpret what artificial intelligence
actually delivers in practice. From Yoon and others comes a
broad synthesis focused on independent Al use during breast
imaging exams, using pooled results to ground claims more
firmly than isolated experiments could [22]. In another
direction, Badawy’s group checks if dense tissue alters how
well Al works in mammograms, revealing it may not only
influence diagnosis but also expose weaknesses in algorithm
behavior and equity issues [23]. A look at CNN performance in
mammography comes from Karthik with team, stressing side-
by-side testing of network types instead of standalone claims
[24]. Work by Dan and others surveys artificial intelligence
uses in breast imaging, situating mammography within broader
techniques without shifting focus away from its central role
[25]. Some studies go beyond mammograms alone, yet remain
relevant by revealing how models adapt across breast imaging
forms - offering clues about design decisions and data handling
that extend further [26]. In one case, Abunasser et al. examine
deep learning for image-based tumor sorting, useful when
comparing methods even if ultrasound or MRI appear instead
of X-ray images [26]. Another path emerges through Trang's
group, building a system merging scan data with patient
histories - a blend where numbers from charts support visual
findings, nudging automated diagnosis closer to actual clinic
conditions [27]. One key point reappears often: density affects
model results - this remains central in evaluating Al meant for
screening tasks, notes Badawy in a repeated entry [28]. Looking
across multiple trials, Da Silva along with co-authors examines
how artificial intelligence measures up against standard
imaging techniques, showing patterns in findings while also
pointing out gaps in consistency among published reports [29].
By 2024, questions shift slightly - not just whether these tools
function - but more deeply into methods for fair comparison
and realistic integration. What stands out in Petchiappan's
analysis is the need for structured testing between different
models rather than trusting isolated research outcomes [30]. A
clearer picture emerges through Khan et al., who gather insights
on deep learning applications in breast scans, summarizing
common network designs, data sources, and trends in accuracy
drawn from current work [31]. Starting with newer forms of
imaging, Kinkar et al. examine how artificial intelligence
adapts to contrast-enhanced mammography - a shift away from
traditional full-field digital methods - raising concerns about
consistency across varied image types [32]. Moving into pattern
recognition, Ahmad and team outline advances in deep learning

applied to identifying and sorting breast cancer cases,
highlighting common research strategies despite wide variation
in implementation [33]. From an environmental angle, El-
Mawla and co-authors propose energy-conscious models for
analyzing mammograms, bringing attention to computational
cost alongside performance [34]. Ending with practical hurdles,
Diaz, Rodriguez-Ruiz, and Sechopoulos explore what stands in
the way of real-world integration, touching on evaluation
standards and long-term viability of these systems [35]. From
2023 to 2024, research in clinical radiology expands insight into
screening practices, moving past basic detection rates. Instead
of relying only on theoretical benchmarks, Chen et al. evaluate
artificial intelligence through tailored screening protocols,
offering clearer alignment with real-world conditions [36].
While routine scans aim to catch tumors early, Nanaa et al.
examine cancers that emerge between screenings - a gap
revealing where current methods fall short and where Al might
prove more reliable [37]. Shifting focus to diagnosis, Krishna
and Mahboub explore mammogram interpretation, highlighting
adjustments that improve accuracy without overhauling
existing workflows [38]. Meanwhile, Zhu and team emphasize
preprocessing techniques in imaging, suggesting that
foundational steps still shape outcomes, even when advanced
algorithms are applied [39]. Looking across recent studies,
Nafissi et al. summarize artificial intelligence applications in
breast cancer, using reviews to bring together varied outcomes
[40]. Moving into imaging, Patra and team examine how Al
identifies tumors and evaluates their seriousness, signaling a
shift toward more detailed medical analysis rather than just
spotting abnormalities [41]. By 2025, newer contributions
continue building on earlier knowledge while extending its
scope. From another angle, Qureshi and co-authors trace
progress from basic image handling through advanced neural
networks in mammogram interpretation, offering structure for
categorizing research by workflow phases [42]. Elsewhere, Ali
and collaborators assess numerous algorithms used in finding
and diagnosing lesions, compiling broad insights about existing
tools alongside challenges limiting real-world use [43].
Looking at Al in breast imaging, Dave’s team presents a
narrative overview stressing careful assessment of evidence
when evaluating Al-supported mammograms, highlighting how
results should be seen using standard measures of diagnostic
performance [44]. Instead of single images, Abdikenov’s group
explores approaches using multiple views, supporting recent
observations that such models match real-world workflows
more closely while improving reliability [45]. From another
angle, Shifa and coworkers investigate tools that make Al
decisions clearer in screening, outlining definitions, evaluation
methods, and reasons transparency matters for user confidence
[46]. Some studies shift focus beyond X-ray based exams to
include tissue analysis and sound wave imaging. Still, they
contribute useful perspectives by comparing how explanations
and testing are handled across diverse Al systems. One example
comes from Alom and associates, who built a deep learning
model designed to offer insight into its reasoning, bridging
pathology slides and ultrasound data. This clarification sheds
light on methods for transparency in mammography analysis
[47]. Public health priorities around early screening are
underlined by the WHO, reinforcing why research often centers
on mammography [48]. A proposed method by Tanveer et al.
applies machine learning to catch signs earlier. Despite deep
learning dominating recent breakthroughs, basic machine
learning concepts continue drawing attention [49]. Specialized
reviews along with tailored strategies signal movement away
from broad frameworks - custom reasoning is becoming more
relevant. Instead of just spotting abnormalities, Al now pulls
extra insights from mammograms - Hosseinzadeh’s team shows
how receptors can be profiled directly through imaging [50].



Shifting focus, Pesapane's work highlights customization:
screening isn’t one-size-fits-all anymore, but adapts per person,
guided by Al-driven risk estimates [51]. From another angle,
Saeidnia proposes a blueprint where algorithms help shape
medical decisions, blending data patterns into real-world
judgment [52]. Meanwhile, Ansari explores transparency,
building models that reveal their logic when supporting breast
cancer diagnoses [51]. What stands out is how often
interpretability now appears essential, not just added on by
choice [53]. Lately, researchers point toward stronger
agreement - consensus matters more than ever before. One
contribution comes from SalekShahabi, who pulls together
machine learning and deep learning methods in a structured
way, building clearer summaries while pushing for head-to-
head method evaluations alongside complete documentation
[54]. Work led by Afiez combines broad literature analysis with
extensive testing across datasets. That shift helps close a long-
standing mismatch: reviews rarely match real-world
performance at scale [55]. A fresh method built on YOLOVS,
introduced by Raeisi et al., tweaks network design to improve
tumor spotting in mammogram images. While detection
methods keep evolving, emphasis now leans into precision
when locating abnormalities [56]. Progress in Al for breast
imaging moves beyond handcrafted features, embracing deep
networks evaluated not just in labs but also in settings
resembling real-world screening. Yet alongside gains, hurdles
remain visible - uneven data representation and limited
population variety trouble reliability [23]; many models lack
testing outside original sites [22]. Clinicians question how
decisions are made inside black-box systems [46], while fitting
tools smoothly into radiology routines proves complex [11].
Because of this mix of promise and friction, comparing
different approaches across varied databases becomes essential;
so does advancing research that spans multiple hospitals, adapts
to tissue density differences, and delivers transparent reasoning
matching actual medical practice.

3. Objectives

This paper aims to deliver a clear, data-driven overview of
artificial intelligence systems built for detecting breast cancer
through mammograms. Drawing from up-to-date scholarly
articles, it pulls together findings to highlight patterns in
effectiveness, advances in techniques, along with key gaps in
current work.

The specific objectives of this study are as follows:

i. To examine Al and deep learning models used in
mammography, focusing on convolutional neural
network (CNN) structures, ensemble frameworks, and
hybrid methods for breast lesion detection and
classification.

ii. To compare datasets and performance metrics by
looking at public and private mammography datasets,
evaluation methods, and reported diagnostic metrics
such as accuracy, sensitivity, specificity, and AUC.

iii. To identify limitations and research gaps, including
issues related to dataset imbalance, model
generalization, and challenges with clinical use.

iv. To understand performance trends and clinical
implications by evaluating the factors that affect
model reliability, interpretability, and usability in
population-based breast cancer screening.

V. To lay a research-informed groundwork for future Al
models that focus on explainability, dataset variety,
and ethical integration into clinical mammography
practices.

4. Methodology / Survey Framework

This work relies on a structured review of existing papers to
explore how artificial intelligence supports mammography in
identifying and assessing breast cancer. Because the aim
involves analyzing and contrasting earlier findings rather than
building a fresh forecasting tool, an observational overview
strategy guides the process.

4.1 Literature Identification and Selection

Searching major scientific platforms - such as IEEE Xplore,
SpringerLink, ScienceDirect, PubMed Central, MDPI, Wiley
Online Library, PLOS, and specialty radiology publications -
led to identifying pertinent research. Articles selected came
after careful examination of peer-reviewed literature, with
attention given to systematic reviews, meta-analyses, and
applied artificial intelligence investigations centered on
mammography for detecting and evaluating breast cancer.

Some of the selected works focused just on how artificial
intelligence functions within mammography. Those dealing
exclusively with different imaging approaches did not make the
cut - unless their methods could clearly benefit breast image
evaluation.

4.2 Inclusion and Exclusion Criteria

Studies were included if they:

e Focusing on mammography, researchers applied
methods like artificial intelligence. Machine learning
approaches were included in some studies. Deep
learning models also played a role across various
analyses

o Offered a straightforward outline of the model's
layout, the data used, or how results were assessed

e Appeared in scholarly journals or established research
outlets.

Studies were excluded if they:

e  Focused solely on techniques beyond mammography
for imaging purposes

e Missing depth in explanation, lacking clear technical
insight

e Some lacked peer review, while others omitted
original studies or systematic analyses

4.3 Data Extraction

From each selected study, key technical and clinical attributes
were extracted to enable structured comparison. These
included:

e Al model or algorithm used

e  Mammography dataset(s) employed



e FEvaluation metrics reported (e.g.,
sensitivity, specificity, AUC)
e Key findings relevant to diagnostic performance
e Reported limitations and clinical constraints
This information formed the basis for comparative evaluation
across studies.

accuracy,

4.4 Comparative Analysis Strategy

The extracted information was analysed by grouping studies
according to shared methodological and clinical characteristics.
Comparisons were conducted across four primary dimensions:

e Al methodology, to examine differences between
deep learning, ensemble, hybrid, and explainable Al
approaches

e Dataset characteristics, to assess the influence of
dataset size, diversity, and image quality on model
performance

e Evaluation metrics, to understand how diagnostic
performance was measured and reported

o Reported limitations, to identify recurring challenges
affecting generalisability and clinical adoption

This strategy enabled identification of performance trends,
methodological strengths, and research gaps across the
literature.

] e Ref.
Model / Approach Dataset Used Metric Performance Key Limitation No
Transpara v1.4.0 Large multi-center screening AUC = 0.840 (95% CI: Tested only on past data, not 3]
(Standalone Al) mammography dataset 0.820-0.860) real-time screening
Al-assisted DL CAD Screening mammograms AUC improved from 0.87 | Needs radiologist interaction to [4]
system (clinical reader study) to 0.89 with Al work well
Standalone CNN-based Al Multl-vendqr mammography AUROC = 0.959 Tested on datasets with more [5]
system screening datasets cancer cases than normal
Feature Selection + Mammaography images _ Uses limited handcrafted
Classifier model (public dataset) AUC=0.867+0.023 features [12]
HOFS + ANN CAD Digital mammogram images Accuracy = 98.97% Requires manual _selectlon of [13]
framework tumor regions
CNN-based_ CAD models DDSM, CBIS-DDSM, MIAS Detection accuracy ~ Mostly tested_ in laboratory [14]
(reviewed) 85.51% conditions
Lunit INSIGHT MMG Screening mammography s L 0 Evaluated on cancer-enriched
(Commercial Al-CAD) dataset Sensitivity = 88.2% data [18]
Hybrid I?ne(;agell_earnmg Digital mammograms Accuracy = 97.8% High computational cost [20]
Meta-analysis of Mammography and DBT Pooled AUC = 0.88-0.90 Results vary across different [22]
standalone Al systems studies studies
Al-aided mammography Mammograms grouped by AUC drops from 0.91 to Lower performance in dense [23]
(density-based study) breast density 0.85 in dense breasts breast cases
CNN ar_chltecture CBIS-DDSM dataset Best AUC > 0.90 (ResNet Evaluated on only one dataset | [24]
comparison study models)
Bi-xBcNet-96 (Green Al Mammoaraohy imaaes Accuracy = 99.12%, Not tested on data from other [34]
CNN) graphy imag Sensitivity = 98.45% hospitals
Lunit INSIGHT MMG Large screening Cancer detection rate Retrospective analvsis onl [36]
(Screening study) mammography dataset increased by ~9% P Y y
Interval cancer detection Screening mammography Sensitivity =~ 84% for Tested on limited population [37]
Al dataset interval cancers groups
Multi-view CNN strategy CC and MLO AUC improved by ~3-5% Needs more data and [45]
mammographic views processing time
YOLOV8 with attention . Detection accuracy ~ . .
modules Mammography images 94%, MAP > 0.90 Requires many labeled images | [56]

5. Discussion

5.1 Performance Trends Across AI Models

Looking back at recent studies reveals steady gains in how well
artificial intelligence works for spotting issues in breast scans.
Instead of older tools that relied on preset image traits and basic
algorithms, most now use advanced neural networks built for
visual data. These newer designs get stronger results because
they figure out intricate patterns straight from the images
themselves without needing manual input [7], [14].

When examined across broad studies, modern CNN-driven
systems show strong results, their AUC scores often ranging
from 0.84 to 0.96. Depending on data traits and testing
approaches, outcomes shift noticeably [3], [4], [5]. One
standout example comes from Kim et al., whose model reached
an AUROC of 0.959 by leveraging extensive screening
mammography records. In isolated detection scenarios, such
accuracy matches - or even exceeds - typical radiologist
performance [5]. Under tightly managed conditions, alternative
deep learning architectures likewise maintain robust levels of
both sensitivity and specificity [18], [22].



Feature extraction happens naturally within CNNs, thanks to
their layered design. Because of this, patterns like abnormal
tissue texture or unusual growth forms become detectable.
Contextual information also gets captured, which helps when
judging if a finding is cancerous. Pre-training on vast
collections of images gives some models a head start. When
fine-tuned for breast imaging, they adapt well, due to prior
exposure. Performance gains appear clearly compared to
networks built from ground up [24], [34]. Still, even with strong
performance in labeling images correctly, models built on
convolutional networks react strongly to distortions in pictures,
shifts in capture methods, or equipment differences across
manufacturers. Their usefulness drops when applied outside
controlled settings because of these factors [9], [35].

5.2 Influence of Dataset Size, Diversity and
Quality

A key influence on how well Al works in mammography lies in
the traits of the data used. Early progress relied heavily on open
resources such as DDSM, CBIS-DDSM, and INbreast - these
enabled consistent testing across studies. Still, because they
cover only a narrow range of imaging setups, include few
subjects, and lack variety in patient backgrounds, models built
on them often fail to apply widely [10], [18].

On the other hand, research using broad, multisite screenings
from actual clinical settings tends to report steadier outcomes.
Work by Rodriguez-Ruiz and team, along with Kim's group,
indicates systems built on varied hospital data adapt more
reliably across different environments - retaining effectiveness
even with unfamiliar inputs [3], [5]. What these findings point
to is clear: variation in population traits, tissue composition,
machines used, and scanning procedures matters just as much
as sheer volume of data.

One major hurdle seen in many datasets is uneven class
distribution, as abnormal results appear only rarely among
routine breast scans. Although techniques such as synthetic data
generation, adjusted classification penalties, or repeating
minority samples are common, these approaches fail to fully
reflect actual population patterns [22]. In broad screening
programs, the issue grows more serious - cancer may occur less
than once per hundred exams. Such conditions can distort
accuracy measurements when models are tested [36].

5.3 Role of Transfer Learning and Data
Augmentation

Starting with knowledge gained elsewhere, transfer learning
helps adapt powerful image features to mammograms when
labeled medical data is scarce. Fine-tuning models initially
trained on broad visual tasks improves results in breast imaging.
Instead of building networks from scratch, researchers leverage
architectures such as ResNet, DenseNet, or EfficientNet -
previously exposed to vast image collections. Evidence
suggests these approaches reach stable performance more
quickly while boosting accuracy across diagnostic benchmarks
[24], [34].

Turning images, mirroring them, tweaking brightness, or
balancing histograms helps reflect variations in how breasts are
positioned during scans. Instead of just relying on real data,
some studies explore using GANSs to create artificial images
when examples are limited or unevenly spread across categories
[8], [39]. Such approaches may help models perform better on
unseen cases by lowering the risk of memorizing too much from
few samples.

However, too much manipulation or clumsy adjustments might
blur key details doctors rely on, steering algorithms off track.
Relying on models trained outside healthcare could pull results
toward unrelated patterns instead. Ahead, work will probably
shift toward training systems directly on vast sets of medical
scans - sharpening their grasp of breast imaging traits and real-
world diagnostics [33], [55].

5.4 Interpretability and Clinical Applicability

Even though these Al tools show strong results, doctors remain
cautious because they cannot see how decisions are made. Deep
neural networks often work like closed systems - offering
answers but not explanations. Without transparency, medical
professionals hesitate to rely on them. Regulatory settings
demand clarity, making opaque methods difficult to accept [35],
[46].

Some tools - such as saliency maps, Grad-CAM, or attention
displays - are designed to reveal what parts of an image
influence a model's output. Rather than guessing, doctors can
see if those regions overlap with known medical signs [46],
[53]. When highlighted zones resemble actual lesions marked
by experts, trust tends to grow. Evidence shows physicians feel
more assured when Al reasoning reflects familiar patterns [7].

Still, being interpretable does not automatically make an Al tool
useful in practice. Many top-performing models were assessed
after the fact, relying on carefully selected data. Such methods
can inflate expectations about how well they work outside
controlled settings [22]. Rare are the trials that look ahead,
involve multiple readers, or span several sites - approaches
widely considered essential for judging real medical impact
[21], [37]. Still, getting these tools to work inside hospitals
means they must fit with existing imaging storage and reporting
systems. Approval from health regulators is also necessary.
Who takes legal responsibility if something goes wrong has yet
to be decided. Important questions like these have no answers
so far [11], [44].

5.5 Limitations and Future Challenges

Even though research advances quickly in Al for
mammography, important gaps still exist. Without sizable,
uniform, and varied imaging data, creating fair and widely
applicable systems becomes difficult. Moreover, limited real-
time clinical testing weakens confidence in actual performance
and reliability.

Bias shows up when models learn mostly from dominant
groups, leaving others behind - this challenges fairness.
Populations left out during training might get unreliable results,



creating uneven outcomes in practice. When systems lack
methods to show their confidence levels, trust becomes harder
in medical settings. Uncertainty awareness matters deeply
where choices affect health.

Last of all, making models more complex brings issues like
higher demands on processing resources, difficulty interpreting
outcomes, while also complicating their integration into
standard screening workflows. Addressing such hurdles calls
for collaboration - between those developing artificial
intelligence methods, medical imaging specialists, hospitals,
oversight bodies, along with experts in ethics - to support
dependable, equitable, clinically useful tools built around
automated breast scan analysis.

6. Conclusion and Future Scope

This comprehensive literature survey of recent studies explores
how artificial intelligence is being used in mammography to
detect and diagnose breast cancer. Attention went toward the
structure of models, characteristics of data collections, ways
results are measured, besides real-world medical application. A
noticeable move has emerged - away from older automated
detection tools toward advanced deep learning techniques,
particularly those built on convolutional neural networks.
Through strategies like reusing pre-trained models, combining
multiple models, or analyzing several image angles at once,
these systems frequently show stronger outcomes across
precision, ability to catch true cases, along with overall
predictive strength. Under specific test settings, certain models
perform nearly as well as, sometimes even outperforming,
typical radiologist readings.

Still, strong results in reports do not guarantee readiness for
actual medical use. Some research relies on past data or samples
with too many cancer examples, skewing how well systems
work when used widely. A shortage of big, consistent, varied
collections of mammograms holds back progress toward
reliable and equitable tools. Problems like dense breast patterns,
uneven case distribution, and variations between scanner
brands add layers to the difficulty. These hurdles shape what
current methods can truly achieve.

Looking at current evidence, only a handful of multi-site trials
have tested Al tools in practice - this leaves major gaps in
understanding. Although some algorithms show potential for
aiding decisions, actual benefits in diagnosis precision,
efficiency gains, or better health results remain unclear.
Surprisingly, even advanced deep learning models often lack
transparency, while explanations meant to clarify them
frequently fail to deliver consistent insights. Trust among
doctors and approval by regulators still lag because clarity and
dependability fall short.

Looking ahead, work must center on building trustworthy Al
tools using broad and varied mammography data. Greater
attention is needed in testing these systems within real-world
medical settings. Factors like tissue density and equitable

performance require careful inclusion during design.
Estimating confidence in predictions matters just as much as
accuracy itself. Fitting new models into current imaging
processes without disruption remains a key hurdle. Progress
depends heavily on joint efforts among technologists,
clinicians, and ethicists. Only through such cooperation can Al
move beyond lab results toward responsible use in detecting
breast cancer effectively.
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