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Abstract: Breast cancer remains a major cause of death from tumors in females globally. Detecting it early via mammograms 

often leads to better results for those affected. Still, challenges like dense tissue, variation between radiologists, too many scans 

to review, reduce precision in diagnosis. New tools powered by artificial intelligence - particularly systems based on deep 

learning - are beginning to help address these problems. This examination looks closely at artificial intelligence techniques 

applied to breast imaging, drawing insights from more than fifty published research papers. Model structures, data 

characteristics, performance measures, and real-world medical application form the core of the discussion. Convolutional 

neural networks appear most frequently across the studies reviewed. Boosted by transfer learning, combined approaches, or 

inputs from multiple image angles, such systems tend to outperform older detection tools in precision, true positive rates, and 

AUC scores. Yet even with strong test outcomes, movement into daily hospital practice remains limited. This issue stems from 

multiple weaknesses, including dependence on past or narrow data, insufficient access to broad and varied mammogram 

collections, weaker results in women with dense breasts, poor model transparency, alongside missing long -term trials across 

different hospitals. Gathering today’s findings reveals key areas left unexplored, highlighting directions essential for creating 

trustworthy, clear, and medically useful artificial intelligence tools for breast imaging.  

Keywords: Breast Cancer Detection; Mammography; Artificial Intelligence; Deep Learning; Convolutional Neural Networks; Medical 
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1. Introduction 

1.1 Background 

Despite progress in medical science, breast cancer still claims 

many lives among women globally, standing out as a primary 

source of cancer deaths even with advances in detection tools 

and treatments [1], [48]. Because catching it sooner often leads 

to longer survival, less intense therapies, and healthier daily 

living, structured screening efforts are seen as vital parts of 

handling the illness well. Detection through mammograms has 

taken center stage in public health strategies since these scans 

can reveal tiny tumours that cannot yet be felt by hand [2], [7]. 

Given their low expense and availability across regions, 

mammographic screenings remain key components within both 

local and global preventive healthcare frameworks. 

 

Even though mammograms matter clinically, reading them well 

is tough. Because breast tissue varies so much, spotting issues 

gets harder when images show faint signs or cluttered anatomy 

- especially where cancer blends into healthy areas [3], [4]. One 

reader might see something another misses, which means some 

people get called back needlessly while others slip through 

gaps. Wrong calls like these lead to avoidable procedures, 

stress, or later detection that changes treatment paths [5], [11]. 

As more screenings happen globally, radiologists face heavier 

loads and tiredness builds - raising chances of mistakes over 

time [8]. 

 

Despite aiming to help radiologists detect abnormalities in 

mammograms, conventional computer-aided diagnosis tools 

faced challenges due to rigid design choices. Instead of learning 

patterns, initial versions depended on predefined rules and 

manually designed traits, making them less effective under 

varying scan qualities or among different groups of patients [6], 

[10]. Because outcomes varied and incorrect alarms occurred 

frequently, trust in these tools remained low. As a result, 

adoption in everyday medical settings stayed minimal. 

 

Nowadays, artificial intelligence - especially through deep 

learning - has changed how medical images are analyzed. 

Starting from basic mammogram data, convolutional neural 

networks pull out layered features automatically, so specialists 

do not have to design them by hand; instead, these systems 

detect subtle signs linked to cancer growth [9], [14]. Work done 

recently shows machines guided by AI can match or even 
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outperform experienced radiologists when reading 

mammograms, especially under structured test conditions and 

evaluation trials [3], [5]. Because of such progress, there is 

growing confidence that AI might improve precision in 

diagnosis while aiding real-world medical choices. 

 

Nowadays, artificial intelligence applied to mammograms 

draws growing attention - not just as an independent tool but as 

support for doctors reading scans. One goal stands out: cutting 

down busy workloads while making results more reliable from 

one expert to another, boosting how smoothly screenings run 

[7], [21]. Still, differences in data quality, testing methods, and 

ways researchers confirm findings make it hard to compare 

what studies claim. Some depend on past cases or selected 

samples that might not mirror everyday clinic settings. That gap 

shows why a careful overview matters - to weigh advances so 

far, spot stubborn hurdles, and point toward where research 

should go next in using AI to find breast cancer early [10], [22]. 

 

1.2 Statement of the Problem 

 

Even though artificial intelligence in mammography performs 

well, real-world medical use faces persistent hurdles. 

Differences in data, image handling techniques, testing criteria, 

and study designs cause wide variation between research 

findings [10], [15]. Since numerous algorithms rely on limited 

or narrow data samples, questions emerge about consistency 

when applied to diverse patient groups or equipment brands 

[18], [23]. 

 

Looking ahead, many AI applications face limited testing 

across diverse clinical settings [21], [22]. Because deep neural 

networks often lack transparency, questions emerge - not only 

around interpretation but also clinician confidence and 

responsible deployment [35], [46], [53]. What stands out is the 

importance of systematically analyzing available studies to 

gauge real advancements, uncover weaknesses, and point 

toward unmet needs. 

 

1.3 Purpose of the Research 

This paper sets out to explore AI-driven techniques applied in 

mammogram analysis for breast cancer detection. Drawing 

from scholarly articles published lately, it collects insights into 

the design, testing, and integration of these systems within 

clinical imaging processes [2], [7], [10]. 

 

This review focuses on how choices in AI architecture relate to 

types of mammography data and outcomes like accuracy, 

sensitivity, specificity, and AUC, based on findings from prior 

work [3], [5], [18]. By comparing studies, it explores influences 

on results - such as volume of data, clarity of images, tissue 

density, and methods involving pre-trained models, combined 

models, or multiple image views - from referenced sources 

[20], [23], [45]. 

 

Looking beyond individual results, this work examines 

weaknesses often seen across studies - such as skewed datasets, 

lack of outside testing, poor interpretability, and hurdles in 

practical use [22], [35], [46]. Instead of just summarizing 

outcomes, it pulls insights from more than fifty papers to 

highlight unanswered questions and emerging paths vital for 

building AI tools in mammography that perform consistently 

and earn clinical confidence [29], [55]. 

 

2. Literature Review 

Early detection stands as a key part of breast cancer 

management, according to existing research. What makes Waks 

and Winer’s work notable is their focus on treatment pathways 

shaped by timely diagnosis [1]. Screening practices now face 

changes due to AI, something Houssami et al. examine through 

practical integration issues and potential benefits [2]. One 

turning point emerged when Rodríguez-Ruiz and team tested 

AI independently against many radiologists, revealing how 

machine results align with expert interpretations in 

mammograms [3]. Another angle comes from Rodríguez-Ruiz, 

who examined the role of artificial intelligence in spotting 

abnormalities on mammograms, revealing its effect on real-

world medical judgments - not merely quoting algorithm 

performance [4]. In much the same way, work by Kim et al. 

looked at how machine assistance changes both correct 

diagnoses and unnecessary follow-ups when used across teams 

of radiologists, grounding lab findings in actual screening 

results [5]. Beyond individual trials, broader summaries also 

appear in current papers. For instance, Bharati and team survey 

techniques using artificial neural networks in breast imaging, 

drawing lines between older network designs and today’s 

deeper models [6]. What sets Sechopoulos, Teuwen, and Mann 

apart is their detailed look at mammography alongside digital 

breast tomosynthesis, spelling out how these imaging forms 

differ in practice - details that shape both development and 

testing of artificial intelligence tools [7]. Instead of building 

models, Raya-Povedano et al. turn attention to how AI might 

ease radiologist workload, using real-world markers such as 

reading duration and process flow to measure effect [8]. From 

another angle, Shah and team map emerging patterns across 

studies, piecing together where research stands now while 

pulling forward recurring ideas seen lately in literature [9]. 

Looking backward with structure, Zebari's group pull together 

existing computational approaches used in computer-aided 

detection for mammograms, offering clarity on processing 

chains, data handling steps, and ways performance gets 

assessed [10]. Shifting ground entirely, Díaz and others 

question if AI truly works within population screening efforts, 

moving past algorithms toward actual program-level results and 

what stops integration into routine care [11]. Starting with older 

machine learning approaches, some research still finds value in 

traditional techniques due to their presence in current 

mammography workflows involving manual feature design or 

mixed modeling steps. Instead of focusing solely on modern 

networks, one team led by Tian evaluates how selecting specific 

features impacts diagnostic accuracy and consistency across 

systems, offering insight into foundational model behaviour 

[12]. Rather than skipping image preparation, Patel along with 

Hadia shows how refining raw scans before analysis improves 

signal clarity for artificial neural networks [13]. Shifting 

perspective, Yoon together with Kim explore deep learning 

tools through the lens of medical practitioners, aligning 

algorithmic outputs with real-world interpretation demands and 

practical constraints in clinics [14]. Moving beyond isolated 

methods, work by Wang et al. maps out uses of advanced 

models in breast cancer detection, forming a cohesive backdrop 

for understanding evolving trends in automated imaging 



reviews [15]. From 2022 onward, studies show growing 

attention to clinical application alongside improved research 

methods. What stands out is how Sechopoulos, Teuwen, and 

Mann emphasize a modality-sensitive approach, key for 

coherence and context in review work [16]. In step with broader 

progress, Karthiga et al. explore artificial intelligence for 

detecting abnormalities in recent mammogram technologies, 

fitting into a pattern of refined deep learning systems and 

stricter validation standards [17]. Instead of treating tumors 

uniformly, Lee and team investigate how computer-aided 

detection tools reflect differences tied to cancer type and image 

traits - revealing that results may shift depending on biological 

subtype and appearance [18]. Meanwhile, Al-Fahaidy's group 

proposes a classification framework applying machine learning 

to digitized scans, building further on basic algorithms and 

transparent modeling strategies for interpreting mammographic 

data [19]. A new hybrid deep learning approach emerges 

through work by Wang et al., aligning with efforts to blend 

methods for better reliability and precision [20]. Instead of 

looking back, Chang’s team sets up a forward-looking, multi-

site framework named AI-STREAM - an unusual move given 

most past studies analyze old data; such designs help shape how 

future tests might unfold [21]. Patterns across many trials add 

depth to how clinicians interpret what artificial intelligence 

actually delivers in practice. From Yoon and others comes a 

broad synthesis focused on independent AI use during breast 

imaging exams, using pooled results to ground claims more 

firmly than isolated experiments could [22]. In another 

direction, Badawy’s group checks if dense tissue alters how 

well AI works in mammograms, revealing it may not only 

influence diagnosis but also expose weaknesses in algorithm 

behavior and equity issues [23]. A look at CNN performance in 

mammography comes from Karthik with team, stressing side-

by-side testing of network types instead of standalone claims 

[24]. Work by Dan and others surveys artificial intelligence 

uses in breast imaging, situating mammography within broader 

techniques without shifting focus away from its central role 

[25]. Some studies go beyond mammograms alone, yet remain 

relevant by revealing how models adapt across breast imaging 

forms - offering clues about design decisions and data handling 

that extend further [26]. In one case, Abunasser et al. examine 

deep learning for image-based tumor sorting, useful when 

comparing methods even if ultrasound or MRI appear instead 

of X-ray images [26]. Another path emerges through Trang's 

group, building a system merging scan data with patient 

histories - a blend where numbers from charts support visual 

findings, nudging automated diagnosis closer to actual clinic 

conditions [27]. One key point reappears often: density affects 

model results - this remains central in evaluating AI meant for 

screening tasks, notes Badawy in a repeated entry [28]. Looking 

across multiple trials, Da Silva along with co-authors examines 

how artificial intelligence measures up against standard 

imaging techniques, showing patterns in findings while also 

pointing out gaps in consistency among published reports [29]. 

By 2024, questions shift slightly - not just whether these tools 

function - but more deeply into methods for fair comparison 

and realistic integration. What stands out in Petchiappan's 

analysis is the need for structured testing between different 

models rather than trusting isolated research outcomes [30]. A 

clearer picture emerges through Khan et al., who gather insights 

on deep learning applications in breast scans, summarizing 

common network designs, data sources, and trends in accuracy 

drawn from current work [31].  Starting with newer forms of 

imaging, Kinkar et al. examine how artificial intelligence 

adapts to contrast-enhanced mammography - a shift away from 

traditional full-field digital methods - raising concerns about 

consistency across varied image types [32]. Moving into pattern 

recognition, Ahmad and team outline advances in deep learning 

applied to identifying and sorting breast cancer cases, 

highlighting common research strategies despite wide variation 

in implementation [33]. From an environmental angle, El-

Mawla and co-authors propose energy-conscious models for 

analyzing mammograms, bringing attention to computational 

cost alongside performance [34]. Ending with practical hurdles, 

Díaz, Rodríguez-Ruiz, and Sechopoulos explore what stands in 

the way of real-world integration, touching on evaluation 

standards and long-term viability of these systems [35]. From 

2023 to 2024, research in clinical radiology expands insight into 

screening practices, moving past basic detection rates. Instead 

of relying only on theoretical benchmarks, Chen et al. evaluate 

artificial intelligence through tailored screening protocols, 

offering clearer alignment with real-world conditions [36]. 

While routine scans aim to catch tumors early, Nanaa et al. 

examine cancers that emerge between screenings - a gap 

revealing where current methods fall short and where AI might 

prove more reliable [37]. Shifting focus to diagnosis, Krishna 

and Mahboub explore mammogram interpretation, highlighting 

adjustments that improve accuracy without overhauling 

existing workflows [38]. Meanwhile, Zhu and team emphasize 

preprocessing techniques in imaging, suggesting that 

foundational steps still shape outcomes, even when advanced 

algorithms are applied [39]. Looking across recent studies, 

Nafissi et al. summarize artificial intelligence applications in 

breast cancer, using reviews to bring together varied outcomes 

[40]. Moving into imaging, Patra and team examine how AI 

identifies tumors and evaluates their seriousness, signaling a 

shift toward more detailed medical analysis rather than just 

spotting abnormalities [41]. By 2025, newer contributions 

continue building on earlier knowledge while extending its 

scope. From another angle, Qureshi and co-authors trace 

progress from basic image handling through advanced neural 

networks in mammogram interpretation, offering structure for 

categorizing research by workflow phases [42]. Elsewhere, Ali 

and collaborators assess numerous algorithms used in finding 

and diagnosing lesions, compiling broad insights about existing 

tools alongside challenges limiting real-world use [43]. 

Looking at AI in breast imaging, Dave’s team presents a 

narrative overview stressing careful assessment of evidence 

when evaluating AI-supported mammograms, highlighting how 

results should be seen using standard measures of diagnostic 

performance [44]. Instead of single images, Abdikenov’s group 

explores approaches using multiple views, supporting recent 

observations that such models match real-world workflows 

more closely while improving reliability [45]. From another 

angle, Shifa and coworkers investigate tools that make AI 

decisions clearer in screening, outlining definitions, evaluation 

methods, and reasons transparency matters for user confidence 

[46]. Some studies shift focus beyond X-ray based exams to 

include tissue analysis and sound wave imaging. Still, they 

contribute useful perspectives by comparing how explanations 

and testing are handled across diverse AI systems. One example 

comes from Alom and associates, who built a deep learning 

model designed to offer insight into its reasoning, bridging 

pathology slides and ultrasound data. This clarification sheds 

light on methods for transparency in mammography analysis 

[47]. Public health priorities around early screening are 

underlined by the WHO, reinforcing why research often centers 

on mammography [48]. A proposed method by Tanveer et al. 

applies machine learning to catch signs earlier. Despite deep 

learning dominating recent breakthroughs, basic machine 

learning concepts continue drawing attention [49]. Specialized 

reviews along with tailored strategies signal movement away 

from broad frameworks - custom reasoning is becoming more 

relevant. Instead of just spotting abnormalities, AI now pulls 

extra insights from mammograms - Hosseinzadeh’s team shows 

how receptors can be profiled directly through imaging [50]. 



Shifting focus, Pesapane's work highlights customization: 

screening isn’t one-size-fits-all anymore, but adapts per person, 

guided by AI-driven risk estimates [51]. From another angle, 

Saeidnia proposes a blueprint where algorithms help shape 

medical decisions, blending data patterns into real-world 

judgment [52]. Meanwhile, Ansari explores transparency, 

building models that reveal their logic when supporting breast 

cancer diagnoses [51]. What stands out is how often 

interpretability now appears essential, not just added on by 

choice [53]. Lately, researchers point toward stronger 

agreement - consensus matters more than ever before. One 

contribution comes from SalekShahabi, who pulls together 

machine learning and deep learning methods in a structured 

way, building clearer summaries while pushing for head-to-

head method evaluations alongside complete documentation 

[54]. Work led by Añez combines broad literature analysis with 

extensive testing across datasets. That shift helps close a long-

standing mismatch: reviews rarely match real-world 

performance at scale [55]. A fresh method built on YOLOv8, 

introduced by Raeisi et al., tweaks network design to improve 

tumor spotting in mammogram images. While detection 

methods keep evolving, emphasis now leans into precision 

when locating abnormalities [56]. Progress in AI for breast 

imaging moves beyond handcrafted features, embracing deep 

networks evaluated not just in labs but also in settings 

resembling real-world screening. Yet alongside gains, hurdles 

remain visible - uneven data representation and limited 

population variety trouble reliability [23]; many models lack 

testing outside original sites [22]. Clinicians question how 

decisions are made inside black-box systems [46], while fitting 

tools smoothly into radiology routines proves complex [11]. 

Because of this mix of promise and friction, comparing 

different approaches across varied databases becomes essential; 

so does advancing research that spans multiple hospitals, adapts 

to tissue density differences, and delivers transparent reasoning 

matching actual medical practice. 

3. Objectives 

This paper aims to deliver a clear, data-driven overview of 

artificial intelligence systems built for detecting breast cancer 

through mammograms. Drawing from up-to-date scholarly 

articles, it pulls together findings to highlight patterns in 

effectiveness, advances in techniques, along with key gaps in 

current work. 

 

The specific objectives of this study are as follows: 

 

i. To examine AI and deep learning models used in 

mammography, focusing on convolutional neural 

network (CNN) structures, ensemble frameworks, and 

hybrid methods for breast lesion detection and 

classification.   

ii. To compare datasets and performance metrics by 

looking at public and private mammography datasets, 

evaluation methods, and reported diagnostic metrics 

such as accuracy, sensitivity, specificity, and AUC.     

iii. To identify limitations and research gaps, including 

issues related to dataset imbalance, model 

generalization, and challenges with clinical use.  

iv. To understand performance trends and clinical 

implications by evaluating the factors that affect 

model reliability, interpretability, and usability in 

population-based breast cancer screening.  

v. To lay a research-informed groundwork for future AI 

models that focus on explainability, dataset variety, 

and ethical integration into clinical mammography 

practices.  

 

4. Methodology / Survey Framework 

 

This work relies on a structured review of existing papers to 

explore how artificial intelligence supports mammography in 

identifying and assessing breast cancer. Because the aim 

involves analyzing and contrasting earlier findings rather than 

building a fresh forecasting tool, an observational overview 

strategy guides the process. 

4.1 Literature Identification and Selection 

Searching major scientific platforms - such as IEEE Xplore, 

SpringerLink, ScienceDirect, PubMed Central, MDPI, Wiley 

Online Library, PLOS, and specialty radiology publications - 

led to identifying pertinent research. Articles selected came 

after careful examination of peer-reviewed literature, with 

attention given to systematic reviews, meta-analyses, and 

applied artificial intelligence investigations centered on 

mammography for detecting and evaluating breast cancer. 

 

Some of the selected works focused just on how artificial 

intelligence functions within mammography. Those dealing 

exclusively with different imaging approaches did not make the 

cut - unless their methods could clearly benefit breast image 

evaluation. 

 

4.2 Inclusion and Exclusion Criteria 

 

Studies were included if they: 

 Focusing on mammography, researchers applied 

methods like artificial intelligence. Machine learning 

approaches were included in some studies. Deep 

learning models also played a role across various 

analyses 

 Offered a straightforward outline of the model's 

layout, the data used, or how results were assessed 

 Appeared in scholarly journals or established research 

outlets. 

 

Studies were excluded if they: 

 Focused solely on techniques beyond mammography 

for imaging purposes 

 Missing depth in explanation, lacking clear technical 

insight 

 Some lacked peer review, while others omitted 

original studies or systematic analyses 

4.3 Data Extraction 

 

From each selected study, key technical and clinical attributes 

were extracted to enable structured comparison. These 

included: 

 AI model or algorithm used 

 Mammography dataset(s) employed 



 Evaluation metrics reported (e.g., accuracy, 

sensitivity, specificity, AUC) 

 Key findings relevant to diagnostic performance 

 Reported limitations and clinical constraints 

This information formed the basis for comparative evaluation 

across studies. 

 

4.4 Comparative Analysis Strategy 

The extracted information was analysed by grouping studies 

according to shared methodological and clinical characteristics. 

Comparisons were conducted across four primary dimensions: 

 

 

 

 AI methodology, to examine differences between 

deep learning, ensemble, hybrid, and explainable AI 

approaches 

 Dataset characteristics, to assess the influence of 

dataset size, diversity, and image quality on model 

performance 

 Evaluation metrics, to understand how diagnostic 

performance was measured and reported 

 Reported limitations, to identify recurring challenges 

affecting generalisability and clinical adoption 

This strategy enabled identification of performance trends, 

methodological strengths, and research gaps across the 

literature. 

 

Model / Approach Dataset Used Metric Performance  Key Limitation 
Ref. 

No. 
Transpara v1.4.0 

(Standalone AI) 

Large multi-center screening 

mammography dataset 

AUC = 0.840 (95% CI: 

0.820–0.860) 

Tested only on past data, not 

real-time screening 
[3] 

AI-assisted DL CAD 

system 

Screening mammograms 

(clinical reader study) 

AUC improved from 0.87 

to 0.89 with AI 

Needs radiologist interaction to 

work well 
[4] 

Standalone CNN-based AI 

system 

Multi-vendor mammography 

screening datasets 
AUROC = 0.959 

Tested on datasets with more 

cancer cases than normal 
[5] 

Feature Selection + 

Classifier model 

Mammography images 

(public dataset) 
AUC = 0.867 ± 0.023 

Uses limited handcrafted 

features 
[12] 

HOFS + ANN CAD 

framework 
Digital mammogram images Accuracy = 98.97% 

Requires manual selection of 

tumor regions 
[13] 

CNN-based CAD models 

(reviewed) 
DDSM, CBIS-DDSM, MIAS 

Detection accuracy ≈ 

85.51% 

Mostly tested in laboratory 

conditions 
[14] 

Lunit INSIGHT MMG 

(Commercial AI-CAD) 

Screening mammography 

dataset 
Sensitivity = 88.2% 

Evaluated on cancer-enriched 

data 
[18] 

Hybrid Deep Learning 

model 
Digital mammograms Accuracy = 97.8% High computational cost [20] 

Meta-analysis of 

standalone AI systems 

Mammography and DBT 

studies 
Pooled AUC ≈ 0.88–0.90 

Results vary across different 

studies 
[22] 

AI-aided mammography 

(density-based study) 

Mammograms grouped by 

breast density 

AUC drops from 0.91 to 

0.85 in dense breasts 

Lower performance in dense 

breast cases 
[23] 

CNN architecture 

comparison study 
CBIS-DDSM dataset 

Best AUC > 0.90 (ResNet 

models) 
Evaluated on only one dataset [24] 

Bi-xBcNet-96 (Green AI 

CNN) 
Mammography images 

Accuracy = 99.12%, 

Sensitivity = 98.45% 

Not tested on data from other 

hospitals 
[34] 

Lunit INSIGHT MMG 

(Screening study) 

Large screening 

mammography dataset 

Cancer detection rate 

increased by ~9% 
Retrospective analysis only [36] 

Interval cancer detection 

AI 

Screening mammography 

dataset 

Sensitivity ≈ 84% for 

interval cancers 

Tested on limited population 

groups 
[37] 

Multi-view CNN strategy 
CC and MLO 

mammographic views 
AUC improved by ~3–5% 

Needs more data and 

processing time 
[45] 

YOLOv8 with attention 

modules 
Mammography images 

Detection accuracy ≈ 

94%, mAP > 0.90 
Requires many labeled images [56] 

 

 

5. Discussion 

 

5.1 Performance Trends Across AI Models 

Looking back at recent studies reveals steady gains in how well 

artificial intelligence works for spotting issues in breast scans. 

Instead of older tools that relied on preset image traits and basic 

algorithms, most now use advanced neural networks built for 

visual data. These newer designs get stronger results because 

they figure out intricate patterns straight from the images 

themselves without needing manual input [7], [14]. 

When examined across broad studies, modern CNN-driven 

systems show strong results, their AUC scores often ranging 

from 0.84 to 0.96. Depending on data traits and testing 

approaches, outcomes shift noticeably [3], [4], [5]. One 

standout example comes from Kim et al., whose model reached 

an AUROC of 0.959 by leveraging extensive screening 

mammography records. In isolated detection scenarios, such 

accuracy matches - or even exceeds - typical radiologist 

performance [5]. Under tightly managed conditions, alternative 

deep learning architectures likewise maintain robust levels of 

both sensitivity and specificity [18], [22]. 



Feature extraction happens naturally within CNNs, thanks to 

their layered design. Because of this, patterns like abnormal 

tissue texture or unusual growth forms become detectable. 

Contextual information also gets captured, which helps when 

judging if a finding is cancerous. Pre-training on vast 

collections of images gives some models a head start. When 

fine-tuned for breast imaging, they adapt well, due to prior 

exposure. Performance gains appear clearly compared to 

networks built from ground up [24], [34]. Still, even with strong 

performance in labeling images correctly, models built on 

convolutional networks react strongly to distortions in pictures, 

shifts in capture methods, or equipment differences across 

manufacturers. Their usefulness drops when applied outside 

controlled settings because of these factors [9], [35]. 

5.2 Influence of Dataset Size, Diversity and 

Quality 

A key influence on how well AI works in mammography lies in 

the traits of the data used. Early progress relied heavily on open 

resources such as DDSM, CBIS-DDSM, and INbreast - these 

enabled consistent testing across studies. Still, because they 

cover only a narrow range of imaging setups, include few 

subjects, and lack variety in patient backgrounds, models built 

on them often fail to apply widely [10], [18]. 

On the other hand, research using broad, multisite screenings 

from actual clinical settings tends to report steadier outcomes. 

Work by Rodríguez-Ruiz and team, along with Kim's group, 

indicates systems built on varied hospital data adapt more 

reliably across different environments - retaining effectiveness 

even with unfamiliar inputs [3], [5]. What these findings point 

to is clear: variation in population traits, tissue composition, 

machines used, and scanning procedures matters just as much 

as sheer volume of data. 

One major hurdle seen in many datasets is uneven class 

distribution, as abnormal results appear only rarely among 

routine breast scans. Although techniques such as synthetic data 

generation, adjusted classification penalties, or repeating 

minority samples are common, these approaches fail to fully 

reflect actual population patterns [22]. In broad screening 

programs, the issue grows more serious - cancer may occur less 

than once per hundred exams. Such conditions can distort 

accuracy measurements when models are tested [36]. 

5.3 Role of Transfer Learning and Data 

Augmentation 

Starting with knowledge gained elsewhere, transfer learning 

helps adapt powerful image features to mammograms when 

labeled medical data is scarce. Fine-tuning models initially 

trained on broad visual tasks improves results in breast imaging. 

Instead of building networks from scratch, researchers leverage 

architectures such as ResNet, DenseNet, or EfficientNet - 

previously exposed to vast image collections. Evidence 

suggests these approaches reach stable performance more 

quickly while boosting accuracy across diagnostic benchmarks 

[24], [34]. 

Turning images, mirroring them, tweaking brightness, or 

balancing histograms helps reflect variations in how breasts are 

positioned during scans. Instead of just relying on real data, 

some studies explore using GANs to create artificial images 

when examples are limited or unevenly spread across categories 

[8], [39]. Such approaches may help models perform better on 

unseen cases by lowering the risk of memorizing too much from 

few samples. 

However, too much manipulation or clumsy adjustments might 

blur key details doctors rely on, steering algorithms off track. 

Relying on models trained outside healthcare could pull results 

toward unrelated patterns instead. Ahead, work will probably 

shift toward training systems directly on vast sets of medical 

scans - sharpening their grasp of breast imaging traits and real-

world diagnostics [33], [55]. 

5.4 Interpretability and Clinical Applicability 

Even though these AI tools show strong results, doctors remain 

cautious because they cannot see how decisions are made. Deep 

neural networks often work like closed systems - offering 

answers but not explanations. Without transparency, medical 

professionals hesitate to rely on them. Regulatory settings 

demand clarity, making opaque methods difficult to accept [35], 

[46]. 

Some tools - such as saliency maps, Grad-CAM, or attention 

displays - are designed to reveal what parts of an image 

influence a model's output. Rather than guessing, doctors can 

see if those regions overlap with known medical signs [46], 

[53]. When highlighted zones resemble actual lesions marked 

by experts, trust tends to grow. Evidence shows physicians feel 

more assured when AI reasoning reflects familiar patterns [7]. 

Still, being interpretable does not automatically make an AI tool 

useful in practice. Many top-performing models were assessed 

after the fact, relying on carefully selected data. Such methods 

can inflate expectations about how well they work outside 

controlled settings [22]. Rare are the trials that look ahead, 

involve multiple readers, or span several sites - approaches 

widely considered essential for judging real medical impact 

[21], [37]. Still, getting these tools to work inside hospitals 

means they must fit with existing imaging storage and reporting 

systems. Approval from health regulators is also necessary. 

Who takes legal responsibility if something goes wrong has yet 

to be decided. Important questions like these have no answers 

so far [11], [44]. 

5.5 Limitations and Future Challenges 

Even though research advances quickly in AI for 

mammography, important gaps still exist. Without sizable, 

uniform, and varied imaging data, creating fair and widely 

applicable systems becomes difficult. Moreover, limited real-

time clinical testing weakens confidence in actual performance 

and reliability. 

 

Bias shows up when models learn mostly from dominant 

groups, leaving others behind - this challenges fairness. 

Populations left out during training might get unreliable results, 



creating uneven outcomes in practice. When systems lack 

methods to show their confidence levels, trust becomes harder 

in medical settings. Uncertainty awareness matters deeply 

where choices affect health. 

 

Last of all, making models more complex brings issues like 

higher demands on processing resources, difficulty interpreting 

outcomes, while also complicating their integration into 

standard screening workflows. Addressing such hurdles calls 

for collaboration - between those developing artificial 

intelligence methods, medical imaging specialists, hospitals, 

oversight bodies, along with experts in ethics - to support 

dependable, equitable, clinically useful tools built around 

automated breast scan analysis. 

 

6. Conclusion and Future Scope 

 

This comprehensive literature survey of recent studies explores 

how artificial intelligence is being used in mammography to 

detect and diagnose breast cancer. Attention went toward the 

structure of models, characteristics of data collections, ways 

results are measured, besides real-world medical application. A 

noticeable move has emerged - away from older automated 

detection tools toward advanced deep learning techniques, 

particularly those built on convolutional neural networks. 

Through strategies like reusing pre-trained models, combining 

multiple models, or analyzing several image angles at once, 

these systems frequently show stronger outcomes across 

precision, ability to catch true cases, along with overall 

predictive strength. Under specific test settings, certain models 

perform nearly as well as, sometimes even outperforming, 

typical radiologist readings. 

 

Still, strong results in reports do not guarantee readiness for 

actual medical use. Some research relies on past data or samples 

with too many cancer examples, skewing how well systems 

work when used widely. A shortage of big, consistent, varied 

collections of mammograms holds back progress toward 

reliable and equitable tools. Problems like dense breast patterns, 

uneven case distribution, and variations between scanner 

brands add layers to the difficulty. These hurdles shape what 

current methods can truly achieve. 

 

Looking at current evidence, only a handful of multi-site trials 

have tested AI tools in practice - this leaves major gaps in 

understanding. Although some algorithms show potential for 

aiding decisions, actual benefits in diagnosis precision, 

efficiency gains, or better health results remain unclear. 

Surprisingly, even advanced deep learning models often lack 

transparency, while explanations meant to clarify them 

frequently fail to deliver consistent insights. Trust among 

doctors and approval by regulators still lag because clarity and 

dependability fall short. 

 

Looking ahead, work must center on building trustworthy AI 

tools using broad and varied mammography data. Greater 

attention is needed in testing these systems within real-world 

medical settings. Factors like tissue density and equitable 

performance require careful inclusion during design. 

Estimating confidence in predictions matters just as much as 

accuracy itself. Fitting new models into current imaging 

processes without disruption remains a key hurdle. Progress 

depends heavily on joint efforts among technologists, 

clinicians, and ethicists. Only through such cooperation can AI 

move beyond lab results toward responsible use in detecting 

breast cancer effectively. 
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